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A flux-corrected transport algorithm in moving grids is developed
and applicd to bansport problems invelviog selution adapted grids. The
success of the algorithm is demonstrated numerically, as are certain
limitations. ¢ 1994 Academic Press, Inc.

1. INTRODUCTION

In this paper, a numerical algorithm for tracking one-
dimensional waves is developed. The algorithm is a
generalization of the flux-corrected transport (FCT) algo-
rithms developed by Boris and Book [4], Zalesak [26],
and Kunhardt and Wu [10]. The FCT algorithm is
generalized to moving grids, where the grid motion is deter-
mined by a selution-adapted grid algorithm (Jor informa-
tion on adaptive grids, sce Anderson [1], Anderson and Rai
[2]. Dwyer, Kce, and Sanders [67], and Dwyer, Smooke,
and Kee [77).

Many of the cited authors have shown that the FCT
algorithm is capable of tracking a wave whose motion is
governed by the one-way wave equation (see Eq.(2.1)
betow ). This algorithm is particularly good at tracking wave
[ronts without introducing spurious oscillations. However,
various versions of the FCT algorithm have some problems
with general waves: the algorithm tends to ¢lip extrema and
intraduce staircases on the sfoped portions of the wave (see
Leonard [[117]). Nevertheless, the usual FCT algorithms arce
very uselul. Note that the techniques developed in this paper
will apply to a wide range of algorithms that are suitable for
- tracking wave fronts.

Previously, Oran and Boris [17] developed a moving-
grid FCT algorithm called LCPFCT. Although the main
ideas used to develop LCPFCT and our algorithms are
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similar, many of the details are different. In addition,
LCPFCT was applied to problems quite different than the
applications described in this paper.

Adaptive grid-generation algorithms can be used to
provide higher resolution of near wave fronts, thus reducing
the number of points needed to track the wave and, hope-
fully, moderating the problems that the FCT algorithm has
with general waves. Wave fronts are given by discontinuities
in the solution or the derivative of the solution of the one-
way wave cquation, so the weights in the adaptive FCT
algorithm are determined by using the first and second
derivatives of the function giving the wave displacement,
then the grid is compressed at jumps or steep transitions in
the wave, where the first decivative is large or infinite, and
it sharp corners of the wave, where the second derivative is
large or infinite.

The new algorithm is called the FCT in moving grids
algorithm (FCTMG}). It is very successful at tracking wave
fronts, us demonstrated by the data in Fig. 1, The calcula-
tions displayed in this figure were made with 101 points
(including boundary points) or 100 cells, in the interval
0< x < 100. The wave speed is w= 0.2, the time at which the
plots are made is r = 800, while the time step is chosen adap-
tively as 0.7 times the minimum time step which maintains
the local CFL number less than one. Figure 1a shows a
calculation that was done with a uniform grid. The spatial
resolution that was chosen is coarse enough o show the
FCT algorithm having difficulties maintaining the shape of
the wave. Figure Ib shows a calculation with the adapted
grid. The FCTMG algorithm has no difficulty maintaining
the wave form with the same number of points that were
used in the previous calculation. Figure 1¢c shows the ratio
of the adapted grid length to the uniform grid length. In this
case, the adaptivity is very precise. For more information on -
the choice of adaptive weights, see Section 5.

Leonard [11] notes that “semi-ellipse is particularly
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FIG. 1.

challenging because of its combination of sudden and
gradual changes in gradient.” Figure 2 shows that the solu-
tion adaptivity exacerbates the problems the FCT has with
this wave. The data for these calculations is the same as the
data used in Fig 1. Figure 2a shows a semi-ellipse or
parabolic profile being tracked in a uniform grid; note the
flattening of the wave just forward of the maximum and the
staircase further down on the wave front. Figure 2b shows
an adapted-grid result which is clearly inferior to the
uniform-grid result. We attribute the problems to the non-
linear interactions of the higher-order method in the FCT
algorithm with the adaptivity functionals that is apparent
from the grid spacing shown Fig. 2c. Thus, the adaptive
algorithm must be used with some care.

(a) FCT on a square wave. (b) FCTMG on a square wave. (¢) Adapted grid.

Many numerical tests were run; Fig. 1 and 2 summarize
the important aspects of these tests. Even with its problems,
the FCTMG algorithm is superior to many standard algo-
rithms. In fact, the FCTMG algorithms was appiied to a
gas-discharge problem [19], producing better results than
those given in Morrow [137, Steinle and Morrow [227, and
Steinle, Morrow, and Roberts [23].

The FCT algorithm has three main steps: (1) calculate a
diffusive solution; (2) calculate a higher-order solution; and
{3) make a flux correction using a nonlinear filter. The new
algorithm starts with the generation of a solution-adaptive
grid. If one traveis with a wave front, then the solution
adaptive grid appears to flow into the front from the down-
wind side and away from the front on the up-wind side of



26 SALARI AND STEINBERG

1.4 2 ‘“4? u
1.2 1.2
1.8 1.84
Y
fmo\
g.8 Qﬁ’i 8.8
a.6- 3 4.6
n n
8.4 0.4
6.2+ 2.2
0
\/ oy
2 P l—%-.«ﬁ a R o R o
-8.2+ B2
L e e T T T -84 T T T T
e 20 4% 1=} a3 104 a 20 4B Eir ] BD 10a
T T

1.2 €

1.8 ! 3

B.B-

Az

3.8

8.4

8.2+

a T T T T
@ zB 4D [=13] =153 e

FIG. 2. {(a) FCT on a paraboiic wave. (b) FCTMG on a parabolic wave. {c) Adapted grid.

the front. This typically strong relative motion of the grid
with respect to the front requires that some care be used
when developing 2 FCTMG algorithm, To solve a wave
equation on a nonuniform moving grid, the wave equation
is transformed to general coordinates, called logical coor-
dinates, and then the transformed equation is discretized.
The transformed equation has the same form as the original
equation; therefore, in principle, the FCT algorithm can be
applied to the logical-space equation. In fact, there are a
number of subtle points. Keep in mind that it is the proper-
ties of the wave in physical space that have direct physical
and geometric meaning. Consequently, if some important
property is not preserved under the transformation and
discretization, then problems should be expected.

The first difficulty occurs in step (1). Consider the situa-
tion where the velocity of a wave is constant. Then, the wave
just translates. If the wave height is constant, then this is a
solution to the one-way wave equation. However, such a
wave is not a solution of the discretized equations that are
used in step (1), unless the differences of the coordinates of
the grid satisfy an identity called the metric identity.
Moreover, if this identity is not satisfied, then the diffusive
approximation that is used in logical space is not always
smooth in physical space. In such circumstances, the FCT
algorithm does not work. On the other hand, the new algo-
rithm is not sensitive to the details of step (2), the computa-
tion of the higher-order solution. In step (3), the filter
involves geometric properties of the wave, while the algo-
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rithm involves logical space quantities. As a consequence,
the new algorithm uses a combination of physical-space and
logical-space quantities. The FCTMG algorithm is sensitive
to the choices made in step (3) of the algorithm.

In fact, implementing finite-difference algorithms in non-
uniform or time-dependent grids has a number of subtieties
(see Thomas and Lombard [24], Vinokur [25], or
Obayashi [16]). Thus, some difficulties should be expected
when implementing an FCT algorithm in such grids. Note
that Morrow and Cram [14] previously implemented the
FCT algorithm in a non-uniform mesh. Rather than using a
moving mesh, a local grid-refinement approach could be
used. However, such algorithms are far more complicated
than the algorithm studied here (see Berger and Colella
[5]). Also, the FCTMG algorithm compares well to the
moving finite-element method (see Gelinas, Doss, and
Miller [8] and Miller [12]). In particular, [8, p. 2187 com-
pares the Lax—Wendroff, leapfrog, denor cell, and reversible
FCT algorithms to the moving finite-element method.
Kansa [9] implemented a shock-capturing scheme in a
moving grid, where the grid motion is determined by having
the solution variables stationary in the least squares sense.

Because of the clipping and staircase problems, it makes
sense to consider other algorithms. In fact, some significant
improvements for the FCT algorithm were made in the
paper [15] by McDonald and Ambrosiono. Moreover,
there are other competing algorithms such as TVD,
Godunov, MUSCL, PPM, and ENO (see Przekwas and
Yang [ 18], Leonard {117, and Shu and Osher [20] for
more information). Przekwas and Yang [18] performed
extensive numerical experiments to compare many variants
of such one-dimensional, advanced computational fluid
dynamics algorithms. We are currently in the process of
implementing and testing a number of these schemes.

The implementation strategy used here should work for
all such advanced computational fluid dynamics algo-
rithms; it has worked well for the ones that we have
implemented.

In Section 2, the one-way wave equation is written in
general coordinates, while in Section 3, the grid layout is
given. The FCTMG algorithm is constructed in Section 4,
and the grid adaptivity algorithm is described in Section 5.

2. THE MODEL PROBLEM IN GENERAL COORDINATES

The initial value problem for the one-way wave equation
in one space variable x and time variable 7 is given by

én  olun)

61+ Ox

=0, 120,

(2.1)

nx,0)=glx), 0<x<d4,

where A is a given constant. The initial value problem (2.1)
is solved for the density #=r(x, t) when the velocity

u=u(x, t) and the initial density g(x) are given. To have a
well-posed problem, a boundary condition must be given,
for example, #(0, 1) =0 if u{x, 7) > 0. Boundary conditions
do not play an important role in this paper.

To apply sclution-adapted grid-generation techniques,
the initial-value problem (2.1) is transformed to a general
moving coordinate system. The transformation has the form

=1t E=E¢(x, 1) (2.2)
The x, t-space is called physical space, while the £, t-space is
called fogical space. The inverse of the transformation is
given by

x=x{¢, rj.

r=r, (2.3)
Note that the adaptive grid generation algorithm produces
the inverse transformation. Therefore, quantities involving
the transformation must, eventually, be eliminated in favor
of quantities determined from the inverse transformation.

The chain rule is used to represent the physical
derivatives ¢,=¢/dt and d,=¢6/0x in terms of logical
derivatives é, = 8/07 and 8, = d/3¢&:

MR
é.r 0 é:x af ’
The Jacobian, that is, the determinant of the Jacobian
matrix of the transformation is simply given by

{2.4)

J=£,. (2.5)
The chain rule can be used to write the derivatives of the
transformation in terms of the inverse transformation:

1
e ¢x = (2.6)
The grid velocity is given by x,.

Applying the chain rule (2.4) to the one-way wave

equation (2.1) gives

0.1+, 0n+C 0 (mu)=0,  n(&0)=g(l) (2.7}
where n=n(g, 1) =n(x(&, 7). 1}, u=u(Z, 1) =u(x(S 1), 7)),
and g(£) = g(x(&, 0)).

To retain the discontinuity capturing propertics of the
usual FCT algorithm, Eq. (2.7) should be put into conserva-
tion form (see Anderson, Tannehil, and Pletcher 3] and
Steinberg and Roache [21] for more details). First, both
sides of the chain-rule form of the one-way wave equation
(2.7) are multiplied by /' Then, the chain-rule (2.4) is
applied to all terms, producing

nl/

R 1
6,}+657—n[6r3+65

<,

é,f
7] tnude =0, (28)
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where

U=¢&,+ué,; (2.9)
U is called the contravariant velocity. Equation (2.6) can be
used to eliminate the derivatives of the transformation in
favor of derivatives of the inverse transformation in
Eq. (2.8). Then, the equality of mixed-partial derivatives of
the transformation implies that all but the first two terms in
(2.8) cancel giving the conservation form of the one-way

wave equation:
n nly
. =|+d:1—1}=0
‘(1)+ ﬁ(J) 0

This argument does not inveolve the derivatives of the
solution which may be discontinuous,. If the new dependent
variables

(2.10)

N=n/l, F=NU, (2.11)
are introduced, then the conservation form of the one-way
wave equation can be put into the compact form

8. N+08,F=0. (2.12)

3. BASIC GRID LAYOUT

The computational region in logical space is given by
0< ES N, 120, where N is a positive integer. The grid that
is listed in Table I and shown in Fig. 3 is placed on logical
space. Because finite-volume arguments are used, logical
space is divided into cells (see Fig. 4). Also, the Euler or
leapfrog scheme is used in time, so nodes are needed at the
time-like cell-face centers, again, see Fig. 4.

It is assumed that the transformation &(x, r) maps the
interval 0 < x < 4 to the interval 0 < & < N for each value of
12 0. Recall that the grid generator produces the inverse
transformation. It 1s assumed that the generator gives the
coordinates of the nodes: x/, 0 <<i< N, j > 0. The points in
physical space are given by

x=xi, t=j 4z, O0<igsN, j=0. (313)
TABLE[
Space-Time Grid
g T iz
Nodes i J 0<igN 0
Cell corners i+1/2 OisN—1 0
Time-like face centers i+172 4122 0igsN-—1 0
Space-like face centers J 0<igN 0
Cell centers i i+1/2 0<isN-1 0

a 1 2 N

FI1G. 3. Logical space grid.

Transformed points are computed at a half-index point by
averaging:

i K
i Xy X
Xivin™= 5 s
. xiFt 4 xd
+ 172 i i
R —=, (3.14)
F+1 7 J+1 7
‘,‘+1,2=X,~+1 +x] X7 +x]
i+ 12 4

In one dimension, it is convenient to use unit steps
{4£=1) in logical space. In other circumstances, it is con-
venient to have a general AZ. In the remainder of this paper,
it is not assumed that 4& = 1. If f and J are either integer or
half-integer indices, then the derivatives of the inverse of the
transformation are computed using

J ] J+172 J—12
(x )J=xl+li’2‘kx!71{2 (x ).,r_x.r — X
Ehr Aé 4 T Ar
(3.15)
i+l
it
J
"*% 1 i+%

FIG. 4. Generic grid cell.
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The derivatives of the transformation are computed using

_ ) ;1
(‘5’);"(.\%);” Ji= . (3.16)

(£:)7

"x Bl
4. THE FCT ALGORITHM ON A MOVING GRID

The FCTMG algorithm is similar to the FCT algorithm
described in Zalesak [26], except that the computations are
done in logical space. The Zalesak algorithm, with certain
modifications, is applied to Eq. (2.12), giving the formulas
described below. In the model problem, it is assumed that u
is given and » needs to be compuled. (In more realistic
problems, u is also computed.) Thus, «/ are the values of u
at the node points, while u/} |7 are the values of « at the
time-like face centers. The FCTMG algorithm uses three
time steps. Thus, assume that x/, x/~% n/, and n/=", have
been computed. The task is to compute x/* ' and #/*". The
first step is to use a grid generator to compute x/*'. The
computation of #/*! requires three steps: (1} compute a
low-order diffusive approximation; (2) compute a high-
order approximation; and (3) filter the approximations. The
computation of the low-order approximation is particularly
sensitive to geometric errors,

Since computations are aif done using logical variables,
the logical-space quantities need to be computed in terms of
the physical-space quantities:

i
Ni=Tho Ui=(@)i+(ENul,  Fi=N{UL

(4.17)

In fact, the N/, not the n?, are stored by the code. Thus, the
algorithm updates the logical space quantitics and then

transforms them to physical space using the inverse of
Eq. (4.17):

m{=JiNG = (el 4 (/UL ST =nful.

(4.18)
Now the problem is to compute N7/*! given N/ and N/ .

4.1. The Diffusive Difference Approximation

First, a diffusive density (N°)/*! is computed. The
differential equation (2.10} is differenced as a flux-balance
equation in a cell,

(ND){+1_N;j+Fj+!/2_Fj+1/2

- R AT
that is,
. R | . )
(NP~ ' = NI =ZZ(FjR )~ Fiy). (420)

a¢

581/1t1/1-3

Here N/ has already been computed and the flux F is
computed using

F+ 1z _ ag i+ 2+ 12
F:‘+1{2 —Ni+1/2 UH—Ul"

(4.21)
where

n1+1/2

Nir2 _Tin 12
i+ 172 _Jj+l,"2'
i+1/2

(4.22)

12 _ F+ 172 172+ 12
Ufjil,fz —(ia)ﬂ-—l}fz +{EN 1% uf:-l}lze

If u« is tabulated at the nodes, then the time-like face-center
values of the velocity /7 |7 are computed using linear inter-
polation, while the time-like face-center densities n/} [ are
computed by using the upwind density:

i+ 1/2 __ 7 H i+ 172

nit s =ni if U/F7E =20,
) 1’;2 ' ' 2 (4.23)
SELYZ i i i+

B2 =iy i U<

One of the goals is to have a constant # generate a solution
to Eg. (4.20), (4.21), and (4.22) when u is constant. This
is achieved by the careful differencing of the logical and
physical quantities that arc used in these equations.

4.2. The Merric Identity

It is critical that if »/ is a constant, then »; constant is
a solution to the difference equation. Let u/=u. Then
w{t 15 =uand n!}!; =n The identities

P12
1 .
J_'jz(xi);"
(A j+1p2 4.24
Jiriz = —(x ), (424)
i+ 12

(‘)3: J+ 172
X i+11'2,_1
Jj+l,f2 -
i+1/2

reduce the difference equation to M/ * 2 =0, where
MtV {(x )+ = {xg) _ (x )y 11/[.% - (xr)’:-t_:ljzz
! At A¢ i
(4.25)

when n/ and u/ are non-zero constants. Note that

Mt xx, —x.=0, (4.26)
and the equality of the mixed partial was used to put the
differential equations in conservation form. Also, note
that Eq. (4.25) depends only on Eqgs. (4.24} and not on the
details of the definitions of the various metric terms.
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Now,
i+ 12 _ i+ 1 i+ 1
Ar M P = xlr, X1,

—XiatXi_ip

—xf:ll/z +x/, 12

+x{ i —x{_ i,
=0, (4.27)
Thus, when the velocity is constant, constant density func-
tions are solutions to the difference scheme. Again, note that
this conclusion is independent of how the corner values
X/, of the transformation are defined as long as ali other
metric quantities are computed in terms of these corner
quantities.

4.3. The High-Order Approximation

An intermediate higher-order approximation N’ of the
density is computed with leapfrog differencing, that is, a
flux-balance equation for a cell that is composed of two cells
in the time direction and an intermediate higher-order
approximation of the flux F'. The flux-balance equation is

WO =N Y = (PO
o + Y =0, (4.28)

which implies that

AL

N[ J’+1=N:f71_
N g 247

((F’ :J‘.+ Y7 (F,){_ [,rz)- (4-29)

Recall that the densities N/ and N/~ ! and the fluxes F/ =
N/ U/ have already been computed. The higher-order flux is
given by an interpolation

(F) o n=nFV  +(FY) = H5(F ,+ F).
(4.30)

This flux is a second-order approximation at the cell corners
provided that the fluxes at the space-like face centers are
exact. Moreover, (F/, ,,—~F/_,,)/4¢ is a fourth-order
approximation of 6F/d¢ at a space-like celi-face center.

44, The FCT Algorithm

The next step in the FCT algorithm is to compute a
“corrected” F¢ that can be used in a one-cell flux-balance
equation to calculate the final density N/*/ (see Fig. 4). The
flux-balance equation is

NI =N EDE = EDTE
At AE

(4.31)

If the corrected flux is written as a correction A to the
diffusive flux

FC=F?%4 4€, (4.32)
then N/*! can be computed by using
. . A . .
NPT = (NP S AR = (AR, (43

The correction 4 is calculated by first calculating a
correction to the diffusive flux and then limiting that correc-
tion. A higher-order flux is computed by interpolating the
existing fluxes to the time-like cell-face centers. First average
the Muxes to the cell centers by using

ey TR MU (N U
’ 2 - 2
(4.34)

This is a natural generalization of the formula (A3) used in
Zalesak [26, p. 3617, but different from the third and fourth
formulas on page 130 of Kunhardt and Wu [[0]. The con-
travariant velocity U/*' is computed with a second-order
backward-difference approximation to (x,)}{*'. As men-
tioned above, interpolate these quantities to the time-like
cell-face centers,

(PR = B2 + (P9 )
i+ 172 2 i+ i

~B((F*)LP+(F*)7),  (435)
and then define the correction by
AT = (ML (FPY% (4.36)

The main part of the FCT algorithm is the computation of
a flux limiter C{7 {73, this is described below. Once the flux
limiter is computed, then limited flux correction A€ is given
by

Oy 12 1/2 4+ 172
(AN E=ClLAAlLs

(4.37)
The Zalesak method of aveiding clipping by predicting
maxima and minima between grid points is used in the flux
limiting. Note that the properties of the physical-space
density », and not the logical-space density N need to be
controlled. However, it is the contravariant velocities
that determine wheter or not material flows into a cell
Consequently, the flux-limiter algorithm uses » and U as its
primary variables. Thus, let
(n®)] =TI (N®),

ni=JIN/, (4.38)

and then the flux constraints are defined as follows.
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If

Al ™Y — (0P ) <0, (4.39)
and either

AT BRI = ()Y <0
or

ALEBURRY T = (0] <0, {4.40)
then set

A{jf{§=0. {4.41)

Now the limiter coefficients C7, ,, are computed as
follows. Set

(r%)] T = max(ni, (r®) 1),

. ’ _ , (4.42)
(nmax):‘:l+! =max((n" {jll’ (n“)f“, (na){:-ll)’
(nb)_;"+l =min(n~,’f, (HD){+]}, 43
[nmin)’j+!.=m-m((nb)l)_'i-lﬁ’(nb){'Jrl ( ),)II‘), ( . )
and
P =max(0, A7 2}~ min(0, 477 12),
4 (4.44)
OF = (™)~ ) )
T
P =max(0, Aj':llﬁ) min{0, Afillﬁ),
A (445)

O ={(n""" -

miny i+ 1 IR i)
(n ); )(xf)i At

{see Kunhardt and Wu [10] for an alternative formula-
tion), Finaljy,

pe o (min(l. QF/PY) i PT>0
Y if P=0,
. , (4.46)
R- _{mm(l, Q7 /P7) if P7>0
“o if P7 =0,
and then
i R7) if AT 220
CitIR = min(R;7 , 4172 '
i+ 142 T {mln{R, 3R5+1) i A:I}f;(o (447}

In Eq. {4.44) and (4.45), the term (x, )" ' 4¢/47 is used to
improve the performance of the algorithm as the time and
space steps are changed.

5. THE SOLUTION ADAPTIVE GRID

A time dependent solution adaptive grid is used to help
resolve wave fronts (for more information on adaptive
grids, see Anderson [1], Anderson and Rai [2], Dwyer,
Kee, and Sanders [ 6], and Dwyer, Smooke, and Kee [7]).
The grid is generated by solving the boundary value
problem

Xt Lx,=0, x(0)=0, x(N)=L, (548)
W

where L is the length of the physical region. This grid
generator is used to make the lengths of the grid segments
proportional to the weight function w. If the segments are
proportional to the weight function, then in the limit,

xg=Cw, (5.49)
for some constant C. Dividing by this equation by w and
then differentiating gives

(fc_i) =0
w/e
which is equivalent to (5.48).

In this application, the weight function is selected to be

(5.50)

wi(E)=1+aln:|*+bing|" (5.51)
where a, b, «, and f are the constants used to control the
amount of grid adaption (these constants are specified for
each numerical experiment). The grid is adapted at each
time step using the current values of n. For Figs. 1 and 2,
e=p=1and b=0.InFig 1, a= 3.0, whilein Fig. 2, a=5.0.
Experiments were run with many other values of these
parameters; no clear conclusions could be made as to what
constitutes the most effective values.
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